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In this paper a refinable and blockwise polynomial with compact support is
shown to be a finite linear combination of a box-spline and its translates (Theorems
1 and 2). Zak transform is used to give an upper bound for the regularity degree
of a refinable function with compact support (Theorem 3). � 1996 Academic Press, Inc.

1. INTRODUCTION AND RESULTS

For an integer m�2, a compactly supported function f is called m-refin-
able if there exists a sequence [cj] of finite length such that

f (x)=:
j

cj f (mx& j ). (1)

A function is called refinable if f is m-refinable for some integer m�2.
Refinable function arises in dyadic interpolation, in the construction of non-
differentiable function, and mainly in multiresolution. It has a strong impact
on the theory and application of wavelets [D1]. In 1992, Daubechies and
Lagarias [DL] proved the nonexistence of C� refinable function with
compact support in one dimension, and Cavaretta et al. [CDM] extended
their result to higher dimensions by using the matrix method. Recently
Lawton et al. [LLS] further proved that a refinable spline is a finite com-
bination of B-splines in one dimension. The purpose of this paper is to
extend their result to higher dimensions and to give an upper bound for the
regularity degree of a refinable function by using the Zak transform.

To these aims, we introduce some definitions. A function f is called a
blockwise polynomial if there exists a simplex decomposition [2j]N

j=1 to
supp f, the supporting set of f, such that f is a polynomial on every simplex
2j , 1� j�N. Hereafter 20=[(x1 , x2 , ..., xn) # Rn; 0�xj�1, �n

j=1 xj�1],
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is called standard simplex on Rn, and a simplex 2 is a nonsingular affine
transform of standard simplex, i.e., 2=A20+c, for some nonsingular
matrix A and c # Rn. We say that [2j]N

j=1 is a simplex decomposition of a
bounded set E if �N

j=1 2j#E, 2j is simplex for every j, and 2j & 2j $ has
Lebesgue measure zero when j{ j $.

Let 5=(a1 , a2 , ..., as) be an s_n matrix with integral entries and of full
rank n. Define the box-spline B5 with the help of Fourier transform by

B� 5 (!)= `
s

j=1

eiaj !&1
iaj !

. (2)

When 5=(1, 1, ..., 1) in one dimension the box spline B5 defined above is
called the B-spline. Hereafter, Fourier transform f� of an integrable function
f is defined by f� (!)=�Rn e&ix!f (x) dx. A Laurent polynomial R(z) is said to
be m closed if R(zm)�R(z) is a Laurent polynomial.

In this paper we will prove the following theorem, which extends Lawton
et al.'s result to higher dimensions.

Theorem 1. Let n�2. Let f be a compactly supported blockwise polyno-
mial. Then f is m-refinable if and only if

f (x)=P(D) \:
k

dk B5 \x&k&
l

m&1++ ,

where P(D) is a homogeneous differential operator, B5 is a box-spline
defined by (2), (�k dk zk) >s

i=1 (zaj&1) is m-closed, and l is an integer.

In one dimension we will prove Lawton et al.'s result under weaker
conditions. A compactly supported function on R is piecewise smooth if
there exist an integer N and a1<a2< } } } <aN+1 such that f is smooth on
every subinterval (aj , aj+1), 1� j�N, and supp f /[a1 , aN+1].

Theorem 2. Let n=1 and let f be a piecewise smooth function with com-
pact support. Then f is m-refinable if and only if

f (x)=:
k

dkB \x&k&
l

m&1+
where l is a fixed integer and k # Z, B(x) is a B-spline, and (z&1)s �k dk zk

is m-closed.

The Zak transform is a very important tool to study Gabor transform
[D2]. After establishing a formula of the Zak transform of refinable func-
tion, we estimate an upper bound for the regularity degree of refinable
function.
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Theorem 3. Let f be a nonzero compactly supported function which
satsifies (1). Denote the set of homogeneous differential operators P(D) such
that P(D) f is continuous by P. Then the dimension of P does not exceed
*[ j, cj{0], where *E denotes the cardinality of the set E.

Compared with the estimate of regular degree in [DL] and [CDM],
this theorem has two improvements. One is that we can consider different
regularities in different directions to f instead of f # Ck for some k. The
other one is that the regularity degree is estimated by the cardinality of all
nonzero cj instead of by the length of [cj]. It obviously implies the
nonexistence of the C� refinable function f with [cj] in (1) having finite
length, and reproves the results of Daubechies and Lagarias [DL] and
Cavaretta et al.'s result [CDM].

Observe that the dimension of P in Theorem 3 is ( n+s
n ) when f belongs

to Cs(Rn). Therefore we get

Corollary 1. Let a compactly supported function f satsify (1). If
f # Cs(Rn), then

\n+s
n +�*[ j, cj{0].

The paper is organized as follows. The proofs of Theorems 1 and 2 are
given in Section 2, and the proof of Theorem 3 is given in Section 3.

2. PROOFS OF THEOREMS 1 AND 2

To prove Theorems 1 and 2, we need some preliminaries. A polynomial
P is called a principal homogeneous polynomial if there exist a natural
number K and Aj # Rn (1� j�K ) such that P(!)=>K

j=1 Aj !. T(!)=
�j aj eibj ! for real bj and complex aj is called a generalized trigonometric
polynomial.

Lemma 1. Let f be a blockwise polynomial with compact support. Then

f� (!)=:
j

Tj (!)
Pj (!)

, (3)

where each Tj is a generalized trigonometric polynomial and each Pj is a
principal homogeneous polynomial.

Proof. Obviously it suffices that (3) holds for a polynomial f on the
standard simplex 20. Integrating by parts, we get
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|
20

e&ix!f (x) dx=&
1

i!n
|

20
e&ix! �

�xn
f (x) dx

+
e&i!n

i!n
|

20$
e&ix$(!$&!ne)f (x$, 1&&x$&) dx$

&
1

i!n
|

20$
e&ix$!$f (x$, 0) d!$,

where 20$=[x$ : xj�0, �n&1
j=1 xj�1], x$=(x1 , ..., xn&1) for x=(x1 , ..., xn),

e=(1, ..., 1), and &x$&=�n&1
j=1 xj . Lemma 1 follows by a finite number of

iterations of the above procedure. K

Lemma 2. Suppose [xj] are finitely distinct real numbers. If �j cj eixj r � 0
as r � +�, then cj=0.

Proof. We prove the lemma by induction on the cardinality of
N=*[xj]. Obviously the conclusion holds when N=1 since |e&ixj r|=1
for all r. Inductively we assume that the conclusion holds for all N�k. Let
g(r)=�k+1

j=1 cj ei(xj&x1) r. Observe that for every s>0,

1
s |

r+s

r
g(t) dt& g(r)=& :

k+1

j=2

cj ei(xj&x1) r {1&
ei(xj&x1) s&1
is(xj&x1) =� 0

as r � +�. Hence cj=0 for all 2� j�k+1 by inductive hypothesis and
s is arbitrary and c1=0 also. K

Lemma 3. Let Pj ( j=1, 2) be two nonzero homogeneous polynomials
and let Tj ( j=1, 2) be two nonzero trigonometric polynomials. If

P1(!) T1(!)=ei:!P2(!) T2(!) (4)

holds for some : # Rn, then : # Zn, P1(!)=CP2(!), and T1(!)=C&1ei:!T2(!)
for some complex number C.

Proof. Define the difference operator $j with step 2?e j by $j f (!)=
f (!)& f (!+2?e j) where e j # Rn is the vector with the j th component 1 and
all other components 0. Observe that $j T1=$j T2=0, deg($j P1)�
deg P1&1, and deg($j P2)�deg P2&1. On the other hand, deg $j P1=
deg P1&1 for at least one j. Therefore we can find difference operators $j(s)

(1�s�deg P1) such that $j(deg P1) } } } $j(1)P1 is a nonzero constant. There-
fore by applying $j(deg P1) } } } $j(1) to both sides of (4), we get

T1(!)=C$j(deg P1) } } } $j(1)(ei:!P2(!)) T2(!)=ei:!P� 2(!) T2(!)
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or

e&i:!T1(!)=P� 2(!) T2(!).

From elementary calculus, we know that deg P� 2=0 and then Lemma 3
follows. K

Lemma 4. Let T be a nonzero generalized trigonometric polynomial and
H be a nonzero trigonometric polynomial. If

T(!)=H(!�m) T(!�m), (5)

then e&i!l�mT(!) is a trigonometric polynomial for some l # Z n.

Proof. Write

T(!)=:
j

eixj !Tj (!)=:
k

eiyk !Qk (!), (6)

where Tj (!) are trigonometric polynomials and xj&xj $ � Zn when j{ j $,
and Qk (m!) are trigonometric polynomials and yk& yk$ � Zn�m when
k{k$. Therefore we may write (5) as

:
k

eiyk !Qk (!)=:
j

eixj !�mH(!�m) Tj (!�m). (7)

For any fixed k, we assume that yk&xj �m # Zn�m for some j. Observe that
each term in ei!xj $�mH(!�m) Tj $ (!�m) is not a term in eiyk !Qk (!) when j ${ j,
and each term in eiyk$!Qk$ (!) is not a term in eixj !�mH(!�m) Tj (!�m) when
k${k. It follows from H�0 and (7) that

eiyk !Qk (!)=eixj !�mH(!�m) Tj (!�m), (8)

and *[ yk]=*[xj]. Therefore by (6)

T(!)=:
j

ei!xjTj (!) (9)

with xj&xj $ � Zn�m when j{ j $. By (8), there furthermore exists xj $ and
s # Zn for any xj in (9) such that xj=xj $ �m+s�m and

ei!xjTj (!)=eixj $!�mH(!�m) Tj $ (!�m). (10)

Define a map M on [xj] by

M(xj)=xj $ ,
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where xj $ is chosen as above. Then M is well-defined and M is one-to-one
on [xj]. Define Xs=[M kxs ; k=1, 2, ...] for every xs . Then Xs=Xs$ or
Xs & Xs$=<. Then we can choose finite numbers of Xl such that

[xj]=.
l

Xl and Xl & Xl $=<.

Therefore the lemma follows if it is proved that Xl is a singleton for every
l and that there is only one Xl in the above decomposition of [xj].

We first prove that for every l, Xl has only one element by contradiction.
Suppose to the contrary that X1=[x1 , ..., xk] for some k�2 for simplicity.
Then we have

Ts(!)=ei:s !H(!�m) Ts+1(!�m) (11)

for all 1�s�k by (9), where :s # Z n�m and we define T1(!)=Tk+1(!).
Hence we have

Ts(!)=ei:$s! `
k

j=1

H \ !
m j+ Ts \ !

mk+
for some :$s # Zn�mk. Write Ts(!)=Ps(!)+Rs(!), where each Ps is
homogeneous polynomial with degree K, |Rs(!)|�C |!| K+1 for bounded !
and all 1�s�k, and Ps is nonzero at least for one 1�s�k. Therefore
H(0)k=mkK and the explicit formula

Ts(!)=ei:$s(m
k�(mk&1)) !g(!) Ps(!) (12)

holds for all 1�s�k, where g(!)=>�
j=1 [H(!�m j)�H(0)]. Hence

ei:$s(m
k�(mk&1)) !Ps(!) T1(!)=ei:$1(mk�(mk&1)) !P1(!) Ts(!)

for all 2�s�k. Furthermore there exist js # Zn and nonzero cs such that

Ps(!)=cs P1(!)

and

Ts(!)=cs eijs !T1(!) (13)

for all 1�s�k by Lemma 3. After choosing xj appropriately in (9), we
may assume js=0 in (13). Therefore we have

cs eixs !T1(!)=eixs!Ts(!)

=eixs+1!�mH(!�m) Ts+1(!�m)

=eixs+1!�mH(!�m) T1(!�m) cs+1
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by (8) and (13), and xs&(xs+1�m)= j�m for some fixed j # Zn and all
1�s�k. Recall that T1(!)=Tk+1(!) and x1=xk+1. Therefore xs=
( j�(m&1)) for all 1�s�k, which contradicts the fact that xj&xj $ � Zn�m
when j{ j $ in (9). This prove that Xl has only one element for every l.

We next prove that there is only one Xl in the decomposition of [xj] by
contradiction. Assume that the only element in Xl is just xl without loss of
generality since Xl has only one element for every l. Hence

eixj !Tj (!)=eixj !�mH(!�m) Tj (!�m)

by (10), and

Tj (!)=ei:j*!g(!) Pj (!) (14)

by (12) for some :j* # Rn. Therefore we get Tj (!)=cj eikj !T1(!) for some
kj # Zn and nonzero constants cj by Lemma 3. After choosing xj

appropriately, we may assume kj=0. Then

eixj !T1(!)=eixj !�mH(!�m) T1(!�m)

for all j, and xj&x1 # Zn, which contradicts (9), since xj&x1 � Zn�m. K

Now we start to prove Theorems 1 and 2.

Proof of Theorem 1. Necessity. Let P be a homogeneous polynomial
of degree K. Define H� (z)=mK+NR(zm)�R(z) >N

j=1 (zmaj&1)�(zaj&1). Then
we have

f� (!)=H� (ei!�m) f� (!�m)

or

f (x)= :
j # Zn

cj f (mx& j ),

where �j # Zn cj z j=H� (z). The necessity is proved.

Sufficiency. Let f be a blockwise polynomial that satisfies the refine-
ment equation (1). Define

H(!)=m&n :
j # Zn

cj e&ij!.

Then

f� (!)=H(!�m) f� (!�m) (15)
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by taking Fourier transform on both sides of (1). By Lemma 4,

f� (!)=:
j

Tj (!)
Pj (!)

= :
s�s0

:
deg Pj=s

Tj (!)
Pj (!)

(16)

for some integer s0�0, where �degPj=s0
(Tj(!)�Pj (!))�0 and [Pj (!)�1]deg Pj=s

is linearly independent for every nonnegative integer s, i.e., �deg Pj=s djPj (!)&1

=0 holds only when dj=0. Observe that

:
s>s0

:
deg Pj=s

Tj (r!)
Pj (r!)

rs0 � 0 as r � +� a.e. ! # Sn&1.

Here S n&1=[x # Rn, |x|=1] is the unit sphere in Rn and a.e. denotes
almost everywhere. Therefore we get

:
deg Pj=s0

Tj (r!)&ms0H(r!�m) Tj (r!�m)
Pj (!)

� 0 as r � +� a.e.

for ! # S n&1. Write

Tj (!)&H(!�m) ms0Tj (!�m)=:
k

cjkeiyk !

and let

Dk(!)= :
deg Pj=s0

cjk

Pj (!)
.

Observe that yk !{ yk$ ! a.e. for ! # S n&1 when k{k$. Hence we get
Dk(!)=0 a.e. for ! # S n&1 by Lemma 2 since �k Dk(!) eiyk!r � 0 as
r � +� a.e. for ! # S n&1. Recall that [Pj (!)&1] is linearly independent
and Pj are homogeneous polynomials of degree s0 . Therefore cjk=0 and
Tj (!)=ms0H(!�m) Tj (!�m) for all j with deg Pj=s0 . Inductively we can
prove

Tj (!)=mdeg PjH(!�m) Tj (!�m) (17)

for all j and

Tj (!)=ei:j !g(!) Qj (!)

as in the proof of Lemma 4 (see (14)), where deg Qj&deg Pj is a fixed
integer. Recall that Tj�0 for all deg Pj=s0 . Therefore we get Tj (!)=
cj ei(l�(m&1)) !T� (!) for all j with deg Pj=s0 by Lemma 4 and we get Tj (!)=0
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for all j with deg Pj>s0 by Lemma 3, since deg Qj{deg Qj $ when
deg Pj{deg Pj $ . Furthermore

f� (!)= :
deg Pj=s0

cj �Pj (!) ei(l�(m&1)) !T� (!).

Write

:
deg Pj=s0

cj �Pj (!)=P(!)�Q(!) (18)

such that Q and P has no common factors, where Q is a principal
homogeneous polynomial and P is a homogenous polynomial. Then we get

Q(!) f� (!)=ei(l�(m&1)) !T� (!) P(!) (19)

for all ! # Rn. Let Q(!)=>N
j=1 aj ! with 0{aj # Rn. Then

T� (!)=0 (20)

on the hyperplanes aj !=0 for all 1� j�N from (19) and the continuity of
f� . Now we prove that for any fixed 1� j�N there exists constant :j # R
such that :j aj # Zn and

T� (!)=(ei:j aj !&1) T� j (!). (21)

Let Aj be a matrix such that det Aj=1 and aj=(0, ..., 0, 1) A&1
j . Write

T� (!)=�s tseis!. Then (20) implies that �s tseisAj (!$, 0)=0, where !$=
(!1 , ..., !n&1) # Rn&1. For typographical reasons, we also use (!1 , ..., !n) to
stand for the transpose of (!1 , ..., !n) when there is no chance of confusion.
Write sAj (!$, 0)=xs!$. Observe that �s tseixs !$=0 implies ts=0 if xs{xs$

for all s{s$, which contradicts T� (!)�0. Hence there exist numbers
s{s$ # Zn such that (xs&xs$) !$=(s&s$) Aj (!$, 0)=0 for all !$ # Rn&1 and
(s&s$) Aj=(;j)

&1 (0, ..., 0, 1){0 for some ;j . Therefore aj=;j (s&s$){0
for some ;j # R. Let :j # R be the real number such that :j aj # Zn and
:j aj � kZn for all integers k with |k|>1. Let Bj be a matrix with integral
entries whose determinant is 1 and its last column is :j aj . Let T� (B&1

j ')=
�k # Z eik'nQk('$) where '=Bj !. Then �k Qk('$)=0 for all '$ # Rn&1 by
(20) and

T� (B&1
j ')=: (eik'n&1) Qk('$)=(ei'n&1) T� ('$, 'n).

Equation (21) is proved. By induction we can prove that

T� (!)= `
N

j=1

(ei:j aj !&1) R(!) (22)
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after a finite number of steps, where R(!) is a trigonometric polynomial.
This proves that there exist a~ j # Zn, l # Zn, homogeneous polynomial P and
trigonometric polynomial R such that

f� (!)= `
N

j=1
\eia~ j !&1

ia~ j ! + R(!) P(!) ei(l�(m&1)) !

and

f (x)=P(D) \ :
k # Zn

dk B5 \x&k&
l

m&1++
by combining (19) and (22), where 7k # Zn dk e&ij!=R(!). Let R� (z)=
�k # Zn dkzk. Then

R� (zm) `
N

i=1

(zma~ j&1)=mN+deg PH� (z) R� (z) `
N

i=1

(za~ j&1)

by (14), where H� (z)=m&n �j # Zn cj z j. Observe that f is supported on a
hyperplane when rank(a~ 1 , ..., a~ N)�n&1. Then rank(a~ 1 , ..., a~ N)=n when f
is a nonzero function. The sufficiency and hence Theorem 2 is proved. K

Proof of Theorem 2. The necessity is proved in [LLS].

Sufficiency. Let f be smooth on (aj , aj+1) (1� j�N ) and supp f /
[a1 , aN+1]. Define (d�dx)k f&(aj)=limx � aj , x<aj (d�dx)k f (x), (d�dx)k f+(aj)
=limx � aj , x>aj (d�dx)k f (x) and fk(aj)=(d�dx)k f+(aj)&(d�dx)k f&(aj). By
integration by parts we get

f� (!)= :
M

k=0

(i!)&k :
N+1

j=1

fk(aj) e&iaj !

+(i!)&M :
N

j=1
|

aj+1

aj

e&ix! \ d
dx+

M+1

f (x) dx

for every integer M�1. Let Tk(!)=�N+1
j=1 fk(aj) e&iaj !. By the same proce-

dure used in the proof of Theorem 1, we can prove Tk(!)=0 except when
k=k0 for some nonnegative integer k0 and

Tk0
(!)=mk0H(!�m) Tk0

(!�m). (23)

Therefore fk(aj)=0 or limx � aj (d�dx)k f (x) exists for all aj when k>k0

since Tk(!)=0. Define h(x)=(d�dx)k0+1 f (x) when x{aj for all j and
h(x)=limx � aj (d�dx)k0+1 f (x) when x=aj for some j. Then we have

f� (!)=(i!)&k0 Tk0
(!)+(i!)&k0 h� (!).
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Observe that h # C� has compact support and h satisfies the refinement
equation h(x)=mk0 �j cj h(mx& j ) by (23) and (15). Therefore by the non-
existence of a C� refinable function with compact support proved by
Daubechies and Lagarais [DL] (or Theorem 3), we get h(x)=0. This
shows that

f� (!)=(i!)&k0 Tk0
(!),

and Theorem 2 follows by using the same method as in the proof of
Theorem 1. K

3. PROOF OF THEOREM 3

To prove Theorem 3, we need a lemma.
Define the Zak transform by

Z( f )(x, !)=:
k

f (x+k) e&ik! (24)

and define the symbol function of the refinement equation (1) by

H(!)=
1

mn :
j # Zn

cj e&ij!. (25)

Lemma 5. Let f satisfy (1). Then the formula

:
el

H((!+2el ?)�m) eiel $ (!+2el ?)�mZ( f )(x, (!+2el ?)�m)

=Z( f )((x+el $)�m, !) (26)

holds for each el $ , where [el] is the set

[(x1 , x2 , ..., xn) # Z n : 0�xj�m&1, 1� j�n].

Proof of Lemma 5. Recall that

:
el

ei2kel ?�m={0
mn

k � mZn

k # mZn

for every k # Zn and

H(!)=m&n :
j

cj e&ij!.
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Therefore the left-hand side of (26) equals

m&n :
k

:
j

cj f (x+k) e&i( j+k&el $) !�m :
el

e&i( j+k&el $) 2el ?�m

=:
r

:
j

cj f (x+mr+el $& j ) e&ir!

=:
r

f ((x+el $)�m+r) e&ir!

=Z( f )((x+el $)�m, !)

and Lemma 5 is proved. K

Proof of Theorem 3. Define a linear operator I on 2?Zn periodic
function by

I : F(!) � :
l

H((!+2el ?)�m) F((!+2el ?)�m).

Observe that �[0, 2?]n IF(!) d!=(2?)n �k ck F� (k) where F� (k)=(1�(2?)n)
�[0, 2?]n e&ik!F(!) d! is the k th Fourier coefficient of F. Therefore

[IF=0]/{F; :
k

ck F� (k)=0= . (27)

Let the set of homogeneous polynomials [Pj] be a basis of P. Define
Z*( f )(!)=Z( f )(0, !). Then Theorem 3 follows easily from (27) and

:
j

cj Z(Pj (D) f ) # [F; IF=0] hold only when cj=0 for all j. (28)

Observe that

IZ*(P(D) f )(!)=mdeg PZ*(P(D) f )(!)

when P(D) f is continuous. Therefore (28) is reduced to

Z*(Pk(D) f )=0 implies Pk=0 (29)

for all nonnegative integers k, where Pk=�deg Pj=k cj Pj . By the definition
of Z*(Pk(D) f ), we know that Pk(D) f ( j )=0 and furthermore that
Pk(D) f (x)=0 for all x # Rn by Lemma 5 and from the continuity of
P(D) f. On the other hand, continuity of f� and P(i!) f� (!)=0 implies f =0,
which contradicts our assumption. Thus (29) is proved, and hence also
Theorem 3. K
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